Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.590
Filtrar
1.
Angew Chem Int Ed Engl ; 63(18): e202402010, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38462490

RESUMO

The cinnamoyl lipid compound youssoufene A1 (1), featuring a unique dearomatic carbon-bridged dimeric skeleton, exhibits increased inhibition against multidrug resistant Enterococcus faecalis as compared to monomeric youssoufenes. However, the formation process of this intriguing dearomatization/dimerization remains unknown. In this study, an unusual "gene-within-gene" thioesterase (TE) gene ysfF was functionally characterized. The gene was found to naturally encodes two proteins, an entire YsfF with α/ß-hydrolase and 4-hydroxybenzoyl-CoA thioesterase (4-HBT)-like enzyme domains, and a nested YsfFHBT (4-HBT-like enzyme). Using an intracellular tagged carrier-protein tracking (ITCT) strategy, in vitro reconstitution and in vivo experiments, we found that: i) both domains of YsfF displayed thioesterase activities; ii) YsfF/YsfFHBT could accomplish the 6π-electrocyclic ring closure for benzene ring formation; and iii) YsfF and cyclase YsfX together were responsible for the ACP-tethered dearomatization/dimerization process, possibly through an unprecedented Michael-type addition reaction. Moreover, site-directed mutagenesis experiments demonstrated that N301, E483 and H566 of YsfF are critical residues for both the 6π-electrocyclization and dimerization processes. This study enhances our understanding of the multifunctionality of the TE protein family.


Assuntos
Lipídeos , Tioléster Hidrolases , Dimerização , Tioléster Hidrolases/química , Mutagênese Sítio-Dirigida
2.
Chem Commun (Camb) ; 60(25): 3379-3388, 2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38456624

RESUMO

Macrocycles are a key functional group that can impart unique properties into molecules. Their synthesis has led to the development of many outstanding chemical methodologies and yet still remains challenging. Thioesterase (TE) domains are frequently responsible for macrocyclization in natural product biosynthesis and provide unique strengths for the enzymatic synthesis of macrocycles. In this feature article, we describe our work to characterize the substrate selectivity of TEs and to use these enzymes as biocatalysts. Our efforts have shown that the linear thioester activated substrates are loaded on TEs with limited substrate selectivity to generate acyl-enzyme intermediates. We show that cyclization of the acyl-enzyme intermediates can be highly selective, with competing hydrolysis of the acyl-enzyme intermediates. The mechanisms controlling TE-mediated macrocyclization versus hydrolysis are a significant unsolved problem in TE biochemistry. The potential of TEs as biocatalysts was demonstrated by using them in the chemoenzymatic total synthesis of macrocyclic depsipeptide natural products. This article highlights the strengths and potential of TEs as biocatalysts as well as their limitations, opening exciting research opportunities including TE engineering to optimize these powerful biocatalysts.


Assuntos
Tioléster Hidrolases , Hidrólise , Tioléster Hidrolases/química
3.
Am J Physiol Cell Physiol ; 326(4): C1034-C1041, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38344800

RESUMO

More than half of the global population is obese or overweight, especially in Western countries, and this excess adiposity disrupts normal physiology to cause chronic diseases. Diabetes, an adiposity-associated epidemic disease, affects >500 million people, and cases are projected to exceed 1 billion before 2050. Lipid excess can impact physiology through the posttranslational modification of proteins, including the reversible process of S-palmitoylation. Dynamic palmitoylation cycling requires the S-acylation of proteins by acyltransferases and the depalmitoylation of these proteins mediated in part by acyl-protein thioesterases (APTs) such as APT1. Emerging evidence points to tissue-specific roles for the depalmitoylase APT1 in maintaining homeostasis in the vasculature, pancreatic islets, and liver. These recent findings raise the possibility that APT1 substrates can be therapeutically targeted to treat the complications of metabolic diseases.


Assuntos
Lipoilação , Tioléster Hidrolases , Humanos , Tioléster Hidrolases/metabolismo , Fenômenos Fisiológicos Celulares
4.
Beijing Da Xue Xue Bao Yi Xue Ban ; 56(1): 9-16, 2024 Feb 18.
Artigo em Chinês | MEDLINE | ID: mdl-38318890

RESUMO

OBJECTIVE: To explore the effect of ubiquitin-specific protease 42 (USP42) on osteogenic differentiation of human adipose-derived stem cells (hASCs) in vivo and in vitro. METHODS: A combination of experiments was carried out with genetic depletion of USP42 using a lentiviral strategy. Alkaline phosphatase (ALP) staining and quantification, alizarin red S (ARS) staining and quantification were used to determine the osteogenic differentiation ability of hASCs under osteogenic induction between the experimental group (knockdown group and overexpression group) and the control group. Quantitative reverse transcription PCR (qRT-PCR) was used to detect the expression levels of osteogenesis related genes in the experimental group and control group, and Western blotting was used to detect the expression levels of osteogenesis related proteins in the experimental group and control group. Nude mice ectopic implantation experiment was used to evaluate the effect of USP42 on the osteogenic differentiation of hASCs in vivo. RESULTS: The mRNA and protein expressions of USP42 in knockdown group were significantly lower than those in control group, and those in overexpression group were significantly higher than those in control group. After 7 days of osteogenic induction, the ALP activity in the knockdown group was significantly higher than that in the control group, and ALP activity in overexpression group was significantly lower than that in control group. After 14 days of osteogenic induction, ARS staining was significantly deeper in the knockdown group than in the control group, and significantly lighter in overexpression group than in the control group. The results of qRT-PCR showed that the mRNA expression levels of ALP, osterix (OSX) and collagen type Ⅰ (COLⅠ) in the knockdown group were significantly higher than those in the control group after 14 days of osteogenic induction, and those in overexpression group were significantly lower than those in control group. The results of Western blotting showed that the expression levels of runt-related transcription factor 2 (RUNX2), OSX and COLⅠ in the knockout group were significantly higher than those in the control group at 14 days after osteogenic induction, while the expression levels of RUNX2, OSX and COLⅠ in the overexpression group were significantly lower than those in the control group. Hematoxylin-eosin staining of subcutaneous grafts in nude mice showed that the percentage of osteoid area in the knockdown group was significantly higher than that in the control group. CONCLUSION: Knockdown of USP42 can significantly promote the osteogenic differentiation of hASCs in vitro and in vivo, and overexpression of USP42 significantly inhibits in vivo osteogenic differentiation of hASCs, and USP42 can provide a potential therapeutic target for bone tissue engineering.


Assuntos
Subunidade alfa 1 de Fator de Ligação ao Core , Osteogênese , Tioléster Hidrolases , Animais , Humanos , Camundongos , Tecido Adiposo/citologia , Diferenciação Celular/genética , Células Cultivadas , Subunidade alfa 1 de Fator de Ligação ao Core/metabolismo , Camundongos Nus , Osteogênese/genética , RNA Mensageiro/metabolismo , Células-Tronco/metabolismo , Proteases Específicas de Ubiquitina/genética , Tioléster Hidrolases/metabolismo
5.
Int J Mol Sci ; 25(3)2024 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-38338801

RESUMO

In a family with Familial Non-Medullary Thyroid Carcinoma (FNMTC), our investigation using Whole-Exome Sequencing (WES) uncovered a novel germline USP42 mutation [p.(Gly486Arg)]. USP42 is known for regulating p53, cell cycle arrest, and apoptosis, and for being reported as overexpressed in breast and gastric cancer patients. Recently, a USP13 missense mutation was described in FNMTC, suggesting a potential involvement in thyroid cancer. Aiming to explore the USP42 mutation as an underlying cause of FNMTC, our team validated the mutation in blood and tissue samples from the family. Using immunohistochemistry, the expression of USP42, Caspase-3, and p53 was assessed. The USP42 gene was silenced in human thyroid Nthy-Ori 3-1 cells using siRNAs. Subsequently, expression, viability, and morphological assays were conducted. p53, Cyclin D1, p21, and p27 proteins were evaluated by Western blot. USP42 protein was confirmed in all family members and was found to be overexpressed in tumor samples, along with an increased expression of p53 and cleaved Caspase-3. siRNA-mediated USP42 downregulation in Nthy-Ori 3-1 cells resulted in reduced cell viability, morphological changes, and modifications in cell cycle-related proteins. Our results suggest a pivotal role of USP42 mutation in thyroid cell biology, and this finding indicates that USP42 may serve as a new putative target in FNMTC.


Assuntos
Câncer Papilífero da Tireoide , Neoplasias da Glândula Tireoide , Proteases Específicas de Ubiquitina , Humanos , Caspase 3/genética , Predisposição Genética para Doença , Mutação , Tioléster Hidrolases/genética , Câncer Papilífero da Tireoide/genética , Neoplasias da Glândula Tireoide/genética , Neoplasias da Glândula Tireoide/patologia , Proteína Supressora de Tumor p53/genética , Proteases Específicas de Ubiquitina/genética
6.
Nat Commun ; 15(1): 9, 2024 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-38167274

RESUMO

PD-1 is a co-inhibitory receptor expressed by CD8+ T cells which limits their cytotoxicity. PD-L1 expression on cancer cells contributes to immune evasion by cancers, thus, understanding the mechanisms that regulate PD-L1 protein levels in cancers is important. Here we identify tumor-cell-expressed otubain-2 (OTUB2) as a negative regulator of antitumor immunity, acting through the PD-1/PD-L1 axis in various human cancers. Mechanistically, OTUB2 directly interacts with PD-L1 to disrupt the ubiquitination and degradation of PD-L1 in the endoplasmic reticulum. Genetic deletion of OTUB2 markedly decreases the expression of PD-L1 proteins on the tumor cell surface, resulting in increased tumor cell sensitivity to CD8+ T-cell-mediated cytotoxicity. To underscore relevance in human patients, we observe a significant correlation between OTUB2 expression and PD-L1 abundance in human non-small cell lung cancer. An inhibitor of OTUB2, interfering with its deubiquitinase activity without disrupting the OTUB2-PD-L1 interaction, successfully reduces PD-L1 expression in tumor cells and suppressed tumor growth. Together, these results reveal the roles of OTUB2 in PD-L1 regulation and tumor evasion and lays down the proof of principle for OTUB2 targeting as therapeutic strategy for cancer treatment.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Linfócitos T Citotóxicos/metabolismo , Linfócitos T CD8-Positivos , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Antígeno B7-H1/metabolismo , Linhagem Celular Tumoral , Receptor de Morte Celular Programada 1/metabolismo , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Preparações Farmacêuticas/metabolismo , Tioléster Hidrolases/metabolismo
7.
J Pharmacol Exp Ther ; 389(1): 51-60, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38296645

RESUMO

Glioblastoma (GBM) is the most frequently diagnosed primary central nervous system tumor in adults. Despite the standard of care therapy, which includes surgical resection, temozolomide chemotherapy, radiation and the newly added tumor-treating fields, median survival remains only ∼20 months. Unfortunately, GBM has a ∼100% recurrence rate, but after recurrence there are no Food and Drug Administration-approved therapies to limit tumor growth and enhance patient survival, as these tumors are resistant to temozolomide (TMZ). Recently, our laboratory reported that lucanthone slows GBM by inhibiting autophagic flux through lysosome targeting and decreases the number of Olig2+ glioma stem-like cells (GSC) in vitro and in vivo. We now additionally report that lucanthone efficiently abates stemness in patient-derived GSC and reduces tumor microtube formation in GSC, an emerging hallmark of treatment resistance in GBM. In glioma tumors derived from cells with acquired resistance to TMZ, lucanthone retains the ability to perturb tumor growth, inhibits autophagy by targeting lysosomes, and reduces Olig2 positivity. We also find that lucanthone may act as an inhibitor of palmitoyl protein thioesterase 1. Our results suggest that lucanthone may function as a potential treatment option for GBM tumors that are not amenable to TMZ treatment. SIGNIFICANCE STATEMENT: We report that the antischistosome agent lucanthone impedes tumor growth in a preclinical model of temozolomide-resistant glioblastoma and reduces the numbers of stem-like glioma cells. In addition, it acts as an autophagy inhibitor, and its mechanism of action may be via inhibition of palmitoyl protein thioesterase 1. As there are no defined therapies approved for recurrent, TMZ-resistant tumor, lucanthone could emerge as a treatment for glioblastoma tumors that may not be amenable to TMZ both in the newly diagnosed and recurrent settings.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Glioma , Lucantona , Humanos , Temozolomida/farmacologia , Temozolomida/uso terapêutico , Glioblastoma/tratamento farmacológico , Glioblastoma/metabolismo , Lucantona/farmacologia , Lucantona/uso terapêutico , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/metabolismo , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos , Recidiva Local de Neoplasia/tratamento farmacológico , Recidiva Local de Neoplasia/patologia , Glioma/tratamento farmacológico , Glioma/patologia , Ensaios Antitumorais Modelo de Xenoenxerto , Antineoplásicos Alquilantes/farmacologia , Antineoplásicos Alquilantes/uso terapêutico , Proteínas de Membrana , Tioléster Hidrolases
8.
Funct Plant Biol ; 512024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38228091

RESUMO

The fatty acyl-acyl carrier protein thioesterase B (FATB ) gene, involved in the synthesis of saturated fatty acids, plays an important role in the content of fatty acid and composition of seed storage lipids. However, the role of FATB in soybeans (Glycine max ) has been poorly characterised. This paper presents a preliminary bioinformatics and molecular biological investigation of 10 hypothetical FATB members. The results revealed that GmFATB1B , GmFATB2A and GmFATB2B contain many response elements involved in defense and stress responses and meristem tissue expression. Moreover, the coding sequences of GmFATB1A and GmFATB1B were significantly longer than those of the other genes. Their expression varied in different organs of soybean plants during growth, with GmFATB2A and GmFATB2B showing higher relative expression. In addition, subcellular localisation analysis revealed that they were mainly present in chloroplasts. Overexpression of GmFATB1A , GmFATB1B , GmFATB2A and GmFATB2B in transgenic Arabidopsis thaliana plants increased the seed oil content by 10.3%, 12.5%, 7.5% and 8.4%, respectively, compared to that in the wild-type and led to significant increases in palmitic and stearic acid content. Thus, this research has increased our understanding of the FATB family in soybeans and provides a theoretical basis for subsequent improvements in soybean quality.


Assuntos
Arabidopsis , Ácidos Graxos , Tioléster Hidrolases , Ácidos Graxos/metabolismo , Arabidopsis/genética , Soja/genética , Sementes/genética
9.
Oncogene ; 43(8): 594-607, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38182895

RESUMO

Bladder cancer (BLCA) is one of the most widespread malignancies worldwide, and displays significant tumor heterogeneity. Understanding the molecular mechanisms exploitable for treating aggressive BLCA represents a crucial objective. Despite the involvement of DLGAP5 in tumors, its precise molecular role in BLCA remains unclear. BLCA tissues exhibit a substantial increase in DLGAP5 expression compared with normal bladder tissues. This heightened DLGAP5 expression positively correlated with the tumor's clinical stage and significantly affected prognosis negatively. Additionally, experiments conducted in vitro and in vivo revealed that alterations in DLGAP5 expression notably influence cell proliferation and migration. Mechanistically, the findings demonstrated that DLGAP5 was a direct binding partner of E2F1 and that DLGAP5 stabilized E2F1 by preventing the ubiquitination of E2F1 through USP11. Furthermore, as a pivotal transcription factor, E2F1 fosters the transcription of DLGAP5, establishing a positive feedback loop between DLGAP5 and E2F1 that accelerates BLCA development. In summary, this study identified DLGAP5 as an oncogene in BLCA. Our research unveils a novel oncogenic mechanism in BLCA and offers a potential target for both diagnosing and treating BLCA.


Assuntos
Neoplasias da Bexiga Urinária , Humanos , Neoplasias da Bexiga Urinária/genética , Bexiga Urinária , Oncogenes , Proliferação de Células/genética , Fatores de Transcrição , Tioléster Hidrolases , Proteínas de Neoplasias , Fator de Transcrição E2F1/genética
10.
J Cell Mol Med ; 28(2): e18017, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38229475

RESUMO

Understanding the mechanisms underlying metastasis in hepatocellular carcinoma (HCC) is crucial for developing new therapies against this fatal disease. Deubiquitinase ubiquitin-specific protease 11 (USP11) belongs to the deubiquitinating family and has previously been reported to play a critical role in cancer pathogenesis. Although it has been established that USP11 can facilitate the metastasis and proliferation ability of HCC, the underlying regulatory mechanisms are poorly understood. The primary objective of this research was to reveal hitherto undocumented functions of USP11 during HCC progression, especially those related to metabolism. Under hypoxic conditions, USP11 was found to significantly impact the glycolysis of HCC cells, as demonstrated through various techniques, including RNA-Seq, migration and colony formation assays, EdU and co-immunoprecipitation. Interestingly, we found that USP11 interacted with the HIF-1α complex and maintained HIF-1α protein stability by removing ubiquitin. Moreover, USP11/HIF-1α could promote glycolysis through the PDK1 and LDHA pathways. In general, our results demonstrate that USP11 promotes HCC proliferation and metastasis through HIF-1α/LDHA-induced glycolysis, providing new insights and the experimental basis for developing new treatments for this patient population.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/patologia , Neoplasias Hepáticas/patologia , Linhagem Celular , Hipóxia , Glicólise , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Linhagem Celular Tumoral , Tioléster Hidrolases/genética , Tioléster Hidrolases/metabolismo
11.
J Biol Chem ; 300(2): 105641, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38211816

RESUMO

The ceroid lipofuscinosis neuronal 1 (CLN1) disease, formerly called infantile neuronal ceroid lipofuscinosis, is a fatal hereditary neurodegenerative lysosomal storage disorder. This disease is caused by loss-of-function mutations in the CLN1 gene, encoding palmitoyl-protein thioesterase-1 (PPT1). PPT1 catalyzes depalmitoylation of S-palmitoylated proteins for degradation and clearance by lysosomal hydrolases. Numerous proteins, especially in the brain, require dynamic S-palmitoylation (palmitoylation-depalmitoylation cycles) for endosomal trafficking to their destination. While 23 palmitoyl-acyl transferases in the mammalian genome catalyze S-palmitoylation, depalmitoylation is catalyzed by thioesterases such as PPT1. Despite these discoveries, the pathogenic mechanism of CLN1 disease has remained elusive. Here, we report that in the brain of Cln1-/- mice, which mimic CLN1 disease, the mechanistic target of rapamycin complex-1 (mTORC1) kinase is hyperactivated. The activation of mTORC1 by nutrients requires its anchorage to lysosomal limiting membrane by Rag GTPases and Ragulator complex. These proteins form the lysosomal nutrient sensing scaffold to which mTORC1 must attach to activate. We found that in Cln1-/- mice, two constituent proteins of the Ragulator complex (vacuolar (H+)-ATPase and Lamtor1) require dynamic S-palmitoylation for endosomal trafficking to the lysosomal limiting membrane. Intriguingly, Ppt1 deficiency in Cln1-/- mice misrouted these proteins to the plasma membrane disrupting the lysosomal nutrient sensing scaffold. Despite this defect, mTORC1 was hyperactivated via the IGF1/PI3K/Akt-signaling pathway, which suppressed autophagy contributing to neuropathology. Importantly, pharmacological inhibition of PI3K/Akt suppressed mTORC1 activation, restored autophagy, and ameliorated neurodegeneration in Cln1-/- mice. Our findings reveal a previously unrecognized role of Cln1/Ppt1 in regulating mTORC1 activation and suggest that IGF1/PI3K/Akt may be a targetable pathway for CLN1 disease.


Assuntos
Doenças por Armazenamento dos Lisossomos , Lipofuscinoses Ceroides Neuronais , Animais , Camundongos , Modelos Animais de Doenças , Lisossomos/metabolismo , Mamíferos/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Lipofuscinoses Ceroides Neuronais/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Tioléster Hidrolases/genética , Tioléster Hidrolases/metabolismo , Camundongos Endogâmicos C57BL
12.
J Biomol Struct Dyn ; 42(3): 1307-1318, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-37139557

RESUMO

Ubiquitin specific protease 30 (USP30) has been attributed to mitochondrial dysfunction and impediment of mitophagy in Parkinson's disease (PD). This happens once ubiquitin that supposed to bind with deformed mitochondria at the insistence of Parkin, it's been recruited by USP30 via the distal ubiquitin binding domain. This is a challenge when PINK1 and Parkin loss their functions due to mutation. Although, there are reports on USP30s' inhibitors but no study on the repurposing of inhibitors approved against MMP-9 and SGLT-2 as potential inhibitors of USP30 in PD. Thus, the highlight therein, is to repurpose approved inhibitors of MMP-9 and SGLT-2 against USP30 in PD using extensive computational modelling framework. 3D structures of Ligands and USP30 were obtained from PubChem and protein database (PDB) servers respectively, and were subjected to molecular docking, ADMET evaluation, DFT calculation, molecular dynamics simulation (MDS) and free energy calculations. Out of the 18 drugs, 2 drugs showed good binding affinity to the distal ubiquitin binding domain, moderate pharmacokinetic properties and good stability. The findings showed canagliflozin and empagliflozin as potential inhibitors of USP30. Thus, we present these drugs as repurposing candidates for the treatment of PD. However, the findings in this current study needs to be validated experimentally.Communicated by Ramaswamy H. Sarma.


Assuntos
Doença de Parkinson , Humanos , Doença de Parkinson/genética , Metaloproteinase 9 da Matriz , Simulação de Acoplamento Molecular , Reposicionamento de Medicamentos , Proteínas Quinases/metabolismo , Proteínas Mitocondriais/química , Tioléster Hidrolases/química , Tioléster Hidrolases/genética , Tioléster Hidrolases/metabolismo , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitina/metabolismo , Proteases Específicas de Ubiquitina/metabolismo
13.
Cell Oncol (Dordr) ; 47(1): 245-258, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37676377

RESUMO

PURPOSE: Platinum-based chemotherapy remains a standard-of-care for most patients with advanced non-small cell lung cancer (NSCLC). DNA damage response (DDR) induced by platinum or Etoposide activated a panel of cell cycle-regulatory proteins including p21 through p53 pathway. Previous studies have reported that RanBPM has been involved in various cellular processes such as DDR by interacting with multiple proteins. However, the underlying mechanism remains unclear. METHODS: NSCLC tissue microarrays were used for assessing the expression of RanBPM by immunohistochemical staining. The roles of RanBPM in the DDR of NSCLC progression was examined in in vitro cell lines and in vivo animal models. The regulation of RanBPM on protein stability and ubiquitination levels were investigated by immunoblots and in vivo ubiquitylation assay. RESULTS: The level of p21 or RanBPM is lower in NSCLC than non-malignant tissues and has a highly positive correlation. Mechanistically, RanBPM protein physically interacts with p21, and RanBPM deubiquitinates p21 by recruiting a deubiquitinase USP11 to maintain protein stability of p21. RanBPM silencing significantly decreased p21 protein level. Conversely, RanBPM overexpression led to the accumulation of endogenous p21 protein regardless of p53 status. Functionally, RanBPM regulates DDR in a p21-dependent manner. Furthermore, DNA damage significantly promoted the nuclear translocation of RanBPM protein through ATM signaling pathways. CONCLUSION: RanBPM is a novel regulator of P21 protein stability, and plays a critical role in the regulation of DDR.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal , Proteínas Mutadas de Ataxia Telangiectasia , Carcinoma Pulmonar de Células não Pequenas , Inibidor de Quinase Dependente de Ciclina p21 , Proteínas do Citoesqueleto , Neoplasias Pulmonares , Proteínas Nucleares , Animais , Humanos , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Carcinoma Pulmonar de Células não Pequenas/genética , Dano ao DNA , Reparo do DNA , Neoplasias Pulmonares/genética , Proteínas Nucleares/metabolismo , Tioléster Hidrolases/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Inibidor de Quinase Dependente de Ciclina p21/metabolismo
14.
J Biol Chem ; 300(1): 105510, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38042492

RESUMO

Tendinopathy is a disorder of musculoskeletal system that primarily affects athletes and the elderly. Current treatment options are generally comprised of various exercise and loading programs, therapeutic modalities, and surgical interventions and are limited to pain management. This study is to understand the role of TRIM54 (tripartite motif containing 54) in tendonitis through in vitro modeling with tendon-derived stem cells (TDSCs) and in vivo using rat tendon injury model. Initially, we observed that TRIM54 overexpression in TDSCs model increased stemness and decreased apoptosis. Additionally, it rescued cells from tumor necrosis factor α-induced inflammation, migration, and tenogenic differentiation. Further, through immunoprecipitation studies, we identified that TRIM54 regulates inflammation in TDSCs by binding to and ubiquitinating YOD1. Further, overexpression of TRIM54 improved the histopathological score of tendon injury as well as the failure load, stiffness, and young modulus in vivo. These results indicated that TRIM54 played a critical role in reducing the effects of tendon injury. Consequently, these results shed light on potential therapeutic alternatives for treating tendinopathy.


Assuntos
Endopeptidases , Proteínas Musculares , Tendinopatia , Tioléster Hidrolases , Idoso , Animais , Humanos , Ratos , Apoptose , Diferenciação Celular/fisiologia , Endopeptidases/metabolismo , Células-Tronco , Tendinopatia/metabolismo , Traumatismos dos Tendões/terapia , Traumatismos dos Tendões/metabolismo , Tendões/metabolismo , Tioléster Hidrolases/metabolismo , Proteínas Musculares/metabolismo
16.
Oncogene ; 43(2): 123-135, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37973952

RESUMO

USP11 is a member of the ubiquitin-specific protease family and plays a crucial role in tumor progression in various cancers. However, the precise mechanism by which USP11 promotes EMT and metastasis in hepatocellular carcinoma (HCC) is not fully understood. In this study, we demonstrated that the USP11 expression was dramatically upregulated in HCC tissues and cell lines. Increased USP11 expression was closely associated with tumor number, vascular invasion, and poor prognosis. Functional experiments demonstrated that USP11 markedly promoted metastasis and EMT in HCC via induction of the transcription factor Snail. Mechanistically, USP11 interacted with and deubiquitinated eEF1A1 on Lys439, thereby inhibiting its ubiquitin-mediated degradation. Subsequently, the elevated expression of eEF1A1 resulted in its binding to SP1, which in turn drove the binding of SP1 to its target HGF gene promoter to increase its transcription. This led to an enhanced expression of HGF and the activation of the downstream PI3K/AKT signaling pathway. We demonstrated that USP11 promotes EMT and metastasis in HCC via eEF1A1/SP1/HGF dependent-EMT. Our findings suggest that the USP11/ eEF1A1/SP1/HGF axis contributes to metastasis in HCC, and therefore, could be considered as a potential therapeutic target for the treatment of HCC.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/patologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Neoplasias Hepáticas/patologia , Fosfatidilinositol 3-Quinases/metabolismo , Transdução de Sinais/genética , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica , Transição Epitelial-Mesenquimal/genética , Metástase Neoplásica , Tioléster Hidrolases/genética , Fator de Crescimento de Hepatócito/genética , Fator de Crescimento de Hepatócito/metabolismo
17.
Burns ; 50(3): 641-652, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38097445

RESUMO

BACKGROUND: Keloid scars occur as a result of abnormal wound healing caused by trauma or inflammation of the skin. The progression of keloids is dependent on genetic and environmental influences. The incidence is more prevalent in people with darker skin tones (African, Asian and Hispanic origin). Studies have demonstrated that transforming growth factor (TGF) ß/Smad signalling has an essential function in keloid as well as that USP11 could modulate the activation of TGFß/Smad signalling and impact the progression of the fibrotic disease. Nonetheless, the potential mechanisms of USP11 in keloid were still unclear. The authors postulated that USP11 up-regulates and augments the ability of proliferation, invasion, migration and collagen deposition of keloid-derived fibroblasts (KFBs) through deubiquitinating TGF-ß receptor II (TßRII). METHODS: Fibroblast cells were isolated from keloid scars in vitro. Lentivirus infection was utilized to knockdown and over-express the USP11 in KFBs. Influence of USP11 on proliferation, invasion and migration of KFBs, and expression level of TßRII, Smad2, Smad3, α-SMA, collagen1 and collagen3 were assayed by CCK8, scratching, transwell, Western blot and real-time quantitative polymerase chain reaction. The interactions between USP11 and TßRII were examined using ubiquitination assays and co-immunoprecipitation. To further confirm the role of USP11 in keloid growth, we performed animal experiments. RESULTS: Results show that down-regulated USP11 markedly suppressed the ability of proliferation, invasion and migration of keloid derived-fibroblasts in vitro and reduce the expression of TßRII, Smad2, Smad3, αSMA, collagen1 and collagen3. In addition, over-expression of USP11 demonstrated the contrary tendency. Ubiquitination experiments and co-immunoprecipitation demonstrated that USP11 was interacting with TßRII and deubiquitinated TßRII. Interferences with USP11 inhibited growth of keloid in vivo. Additionally, we have verified that knockdown of USP11 has no significant effect on normal skin fibroblasts. CONCLUSION: USP11 elevates the ability of proliferation, collagen deposition, invasion and migration of keloid-derived fibroblasts by deubiquitinating TßRII.


Assuntos
Queimaduras , Queloide , Animais , Humanos , Queimaduras/patologia , Proliferação de Células , Células Cultivadas , Colágeno , Fibroblastos , Queloide/metabolismo , Tioléster Hidrolases/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Fator de Crescimento Transformador beta1/metabolismo , Proteases Específicas de Ubiquitina/metabolismo
18.
Target Oncol ; 19(1): 95-106, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38133710

RESUMO

BACKGROUND: Palmitoyl-protein thioesterase-1 (PPT1) is a clinical stage druggable target for inhibiting autophagy in cancer. OBJECTIVE: We aimed to determine the cellular and molecular activity of targeting PPT1 using ezurpimtrostat, in combination with an anti-PD-1 antibody. METHODS: In this study we used a transgenic immunocompetent mouse model of hepatocellular carcinoma. RESULTS: Herein, we revealed that inhibition of PPT1 using ezurpimtrostat decreased the liver tumor burden in a mouse model of hepatocellular carcinoma by inducing the penetration of lymphocytes into tumors when combined with anti-programmed death-1 (PD-1). Inhibition of PPT1 potentiates the effects of anti-PD-1 immunotherapy by increasing the expression of major histocompatibility complex (MHC)-I at the surface of liver cancer cells and modulates immunity through recolonization and activation of cytotoxic CD8+ lymphocytes. CONCLUSIONS: Ezurpimtrostat turns cold tumors into hot tumors and, thus, could improve T cell-mediated immunotherapies in liver cancer.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Tioléster Hidrolases , Camundongos , Humanos , Animais , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/patologia , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/patologia , Receptor de Morte Celular Programada 1 , Camundongos Transgênicos , Linfócitos T CD8-Positivos/metabolismo , Linfócitos T CD8-Positivos/patologia , Linfócitos/metabolismo
19.
mSystems ; 9(1): e0097323, 2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38112462

RESUMO

Dengue fever is a mosquito-borne tropical disease caused by the dengue virus (DENV). The replication of DENV relies on the processing of its genome-encoded polyprotein by both viral protease NS3 (NS3pro) and host proteases. However, the impact of host proteases on DENV proliferation is not well understood. In this study, we utilized fluorophosphonate-based probes (FPs) to investigate the up-regulation of host serine proteases during DENV infection in detail. Among the identified proteases, acyl-CoA thioesterase 2 (ACOT2), an enzyme that hydrolyzes acyl-CoA molecules to generate fatty acids and free CoA, exhibited cleavage activity against DENV polypeptide substrates. Enzymatic assays and virological experiments confirmed that ACOT2 contributes to DENV propagation during the replication stage by cleaving the viral polyprotein. Docking models provided insights into the binding pocket of viral polypeptides and the catalytic mechanism of ACOT2. Notably, this study is the first to demonstrate that ACOT2 functions as a serine protease to hydrolyze protein substrates. These findings offer novel insights into DENV infection, host response, as well as the potential development of innovative antiviral strategies.IMPORTANCEDENV, one of the major pathogens of Dengue fever, remains a significant public health concern in tropical and subtropical regions worldwide. How DENV efficiently hijacks the host and accesses its life cycle with delicate interaction remains to be elucidated. Here, we deconvoluted that the host protease ACOT2 assists the DENV replication and characterized the ACOT2 as a serine protease involved in the hydrolysis of the DENV polypeptide substrate. Our results not only further the understanding of the DENV life cycle but also provide a possibility for the usage of activity-based proteomics to reveal host-virus interactions.


Assuntos
Vírus da Dengue , Dengue , Animais , Humanos , Vírus da Dengue/química , Serina Proteases , Poliproteínas , Serina Endopeptidases/química , Dengue/metabolismo , Peptídeos , Proliferação de Células , Tioléster Hidrolases
20.
Nat Commun ; 14(1): 7295, 2023 11 13.
Artigo em Inglês | MEDLINE | ID: mdl-37957154

RESUMO

Mutations in SNCA, the gene encoding α-synuclein (αSyn), cause familial Parkinson's disease (PD) and aberrant αSyn is a key pathological hallmark of idiopathic PD. This α-synucleinopathy leads to mitochondrial dysfunction, which may drive dopaminergic neurodegeneration. PARKIN and PINK1, mutated in autosomal recessive PD, regulate the preferential autophagic clearance of dysfunctional mitochondria ("mitophagy") by inducing ubiquitylation of mitochondrial proteins, a process counteracted by deubiquitylation via USP30. Here we show that loss of USP30 in Usp30 knockout mice protects against behavioral deficits and leads to increased mitophagy, decreased phospho-S129 αSyn, and attenuation of SN dopaminergic neuronal loss induced by αSyn. These observations were recapitulated with a potent, selective, brain-penetrant USP30 inhibitor, MTX115325, with good drug-like properties. These data strongly support further study of USP30 inhibition as a potential disease-modifying therapy for PD.


Assuntos
Doença de Parkinson , Tioléster Hidrolases , Animais , Camundongos , alfa-Sinucleína/genética , alfa-Sinucleína/metabolismo , Neurônios Dopaminérgicos/metabolismo , Camundongos Knockout , Mitocôndrias/metabolismo , Doença de Parkinson/metabolismo , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitinação , Tioléster Hidrolases/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...